PCL
IndirectSortedArray.h
Go to the documentation of this file.
1 // ____ ______ __
2 // / __ \ / ____// /
3 // / /_/ // / / /
4 // / ____// /___ / /___ PixInsight Class Library
5 // /_/ \____//_____/ PCL 2.8.5
6 // ----------------------------------------------------------------------------
7 // pcl/IndirectSortedArray.h - Released 2024-12-28T16:53:48Z
8 // ----------------------------------------------------------------------------
9 // This file is part of the PixInsight Class Library (PCL).
10 // PCL is a multiplatform C++ framework for development of PixInsight modules.
11 //
12 // Copyright (c) 2003-2024 Pleiades Astrophoto S.L. All Rights Reserved.
13 //
14 // Redistribution and use in both source and binary forms, with or without
15 // modification, is permitted provided that the following conditions are met:
16 //
17 // 1. All redistributions of source code must retain the above copyright
18 // notice, this list of conditions and the following disclaimer.
19 //
20 // 2. All redistributions in binary form must reproduce the above copyright
21 // notice, this list of conditions and the following disclaimer in the
22 // documentation and/or other materials provided with the distribution.
23 //
24 // 3. Neither the names "PixInsight" and "Pleiades Astrophoto", nor the names
25 // of their contributors, may be used to endorse or promote products derived
26 // from this software without specific prior written permission. For written
27 // permission, please contact info@pixinsight.com.
28 //
29 // 4. All products derived from this software, in any form whatsoever, must
30 // reproduce the following acknowledgment in the end-user documentation
31 // and/or other materials provided with the product:
32 //
33 // "This product is based on software from the PixInsight project, developed
34 // by Pleiades Astrophoto and its contributors (https://pixinsight.com/)."
35 //
36 // Alternatively, if that is where third-party acknowledgments normally
37 // appear, this acknowledgment must be reproduced in the product itself.
38 //
39 // THIS SOFTWARE IS PROVIDED BY PLEIADES ASTROPHOTO AND ITS CONTRIBUTORS
40 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
41 // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL PLEIADES ASTROPHOTO OR ITS
43 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
44 // EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, BUSINESS
45 // INTERRUPTION; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; AND LOSS OF USE,
46 // DATA OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49 // POSSIBILITY OF SUCH DAMAGE.
50 // ----------------------------------------------------------------------------
51 
52 #ifndef __PCL_IndirectSortedArray_h
53 #define __PCL_IndirectSortedArray_h
54 
56 
57 #include <pcl/Defs.h>
58 #include <pcl/Diagnostics.h>
59 
60 #include <pcl/IndirectArray.h>
61 #include <pcl/SortedArray.h>
62 
63 namespace pcl
64 {
65 
66 // ----------------------------------------------------------------------------
67 
90 template <class T, class A = StandardAllocator>
91 class PCL_CLASS IndirectSortedArray : public IndirectSortedContainer<T>
92 {
93 public:
94 
98 
102 
106 
110 
114 
118 
122 
126 
130 
134 
138 
142 
143  // -------------------------------------------------------------------------
144 
148  IndirectSortedArray() = default;
149 
154  explicit
156  : m_array( n )
157  {
158  }
159 
165  : m_array( n, p )
166  {
167  }
168 
174  template <class FI>
175  IndirectSortedArray( FI i, FI j )
176  : m_array( i, j )
177  {
178  Sort();
179  }
180 
185 
190 
199  {
200  }
201 
206  bool IsUnique() const
207  {
208  return m_array.IsUnique();
209  }
210 
218  bool IsAliasOf( const IndirectSortedArray& x ) const
219  {
220  return m_array.IsAliasOf( x.m_array );
221  }
222 
232  {
233  m_array.EnsureUnique();
234  }
235 
240  size_type Size() const
241  {
242  return m_array.Size();
243  }
244 
248  {
249  return m_array.Length();
250  }
251 
255  {
256  return m_array.Capacity();
257  }
258 
262  {
263  return m_array.Available();
264  }
265 
268  bool IsValid() const
269  {
270  return m_array.IsValid();
271  }
272 
275  bool IsEmpty() const
276  {
277  return m_array.IsEmpty();
278  }
279 
283  {
284  return m_array.LowerBound();
285  }
286 
290  {
291  return m_array.UpperBound();
292  }
293 
296  const allocator& Allocator() const
297  {
298  return m_array.Allocator();
299  }
300 
303  void SetAllocator( const allocator& a )
304  {
305  m_array.SetAllocator( a );
306  }
307 
311  {
312  return m_array.At( i );
313  }
314 
318  {
319  return m_array.At( i );
320  }
321 
325  {
326  return m_array.MutableIterator( i );
327  }
328 
331  const T* operator []( size_type i ) const
332  {
333  return m_array[i];
334  }
335 
338  const T* operator *() const
339  {
340  return *Begin();
341  }
342 
346  {
347  return m_array.ConstBegin();
348  }
349 
353  {
354  return m_array.Begin();
355  }
356 
360  {
361  return m_array.ConstEnd();
362  }
363 
367  {
368  return m_array.End();
369  }
370 
374  {
375  return m_array.ConstReverseBegin();
376  }
377 
381  {
382  return m_array.ReverseBegin();
383  }
384 
388  {
389  return m_array.ConstReverseEnd();
390  }
391 
395  {
396  return m_array.ReverseEnd();
397  }
398 
401  const T* First() const
402  {
403  return m_array.First();
404  }
405 
408  T* MutableFirst()
409  {
410  return IsEmpty() ? nullptr : *MutableBegin();
411  }
412 
415  const T* Last() const
416  {
417  return m_array.Last();
418  }
419 
422  T* MutableLast()
423  {
424  return IsEmpty() ? nullptr : *MutableReverseBegin();
425  }
426 
436  {
437  m_array.UniquifyIterator( i );
438  }
439 
450  {
451  m_array.UniquifyIterators( i, j );
452  }
453 
454 #ifndef __PCL_NO_STL_COMPATIBLE_ITERATORS
459  {
460  return Begin();
461  }
462 
467  {
468  return End();
469  }
470 #endif // !__PCL_NO_STL_COMPATIBLE_ITERATORS
471 
478  IndirectSortedArray& operator =( const IndirectSortedArray& x )
479  {
480  Assign( x );
481  return *this;
482  }
483 
486  void Assign( const IndirectSortedArray& x )
487  {
488  m_array.Assign( x.m_array );
489  }
490 
495  {
496  Transfer( x );
497  return *this;
498  }
499 
503  {
504  m_array.Transfer( x.m_array );
505  }
506 
510  {
511  m_array.Transfer( x.m_array );
512  }
513 
517  {
518  Assign( x );
519  return *this;
520  }
521 
524  void Assign( const array_implementation& x )
525  {
526  m_array.Assign( x );
527  Sort();
528  }
529 
533  {
534  Transfer( x );
535  return *this;
536  }
537 
541  {
542  m_array.Transfer( x );
543  Sort();
544  }
545 
549  {
550  m_array.Transfer( x );
551  Sort();
552  }
553 
556  void Assign( const T* p, size_type n = 1 )
557  {
558  m_array.Assign( p, n );
559  }
560 
563  template <class FI>
564  void Assign( FI i, FI j )
565  {
566  m_array.Assign( i, j );
567  Sort();
568  }
569 
572  template <class C>
573  void CloneAssign( const C& x )
574  {
575  m_array.CloneAssign( x );
576  Sort();
577  }
578 
582  {
583  m_array.CloneAssign( x );
584  }
585 
589  {
590  m_array.CloneAssign( x );
591  }
592 
595  void Import( iterator i, iterator j )
596  {
597  m_array.Import( i, j );
598  Sort();
599  }
600 
604  {
605  return m_array.Release();
606  }
607 
610  void Add( const IndirectSortedArray& x )
611  {
612  const_iterator p = x.m_array.Begin(), q = x.m_array.End();
613  less cmp;
614  for ( iterator i = m_array.Begin(); i < m_array.End() && p < q; ++i )
615  if ( cmp( *p, *i ) )
616  i = m_array.Insert( i, *p++ );
617  if ( p < q )
618  m_array.Append( p, q );
619  }
620 
623  void Add( const IndirectArray<T,A>& x )
624  {
625  Add( x.Begin(), x.End() );
626  }
627 
630  const_iterator Add( const T* p, size_type n = 1 )
631  {
632  return m_array.Insert( pcl::InsertionPoint( m_array.Begin(), m_array.End(), p, less() ), p, n );
633  }
634 
637  template <class FI>
638  void Add( FI i, FI j )
639  {
640  if ( i != j )
641  {
642  m_array.EnsureUnique();
643  for ( const_iterator l = m_array.Begin(), r = m_array.End(); ; )
644  {
645  FI h = i;
646  const_iterator m = m_array.Insert( pcl::InsertionPoint( l, r, *i, less() ), *i );
647 
648  if ( ++i == j )
649  break;
650 
651  if ( less()( *i, *h ) )
652  {
653  l = m_array.Begin();
654  r = m;
655  }
656  else
657  {
658  l = m+1;
659  r = m_array.End();
660  }
661  }
662  }
663  }
664 
667  void Remove( const_iterator i, size_type n = 1 )
668  {
669  m_array.Remove( i, n );
670  }
671 
675  {
676  m_array.Remove( i, j );
677  }
678 
691  void RemoveFirst( size_type n = 1 )
692  {
693  m_array.RemoveFirst( n );
694  }
695 
708  void RemoveLast( size_type n = 1 )
709  {
710  m_array.RemoveLast( n );
711  }
712 
727  {
728  m_array.Truncate( i );
729  }
730 
735  void Shrink( size_type n = 1 )
736  {
737  m_array.Shrink( n );
738  }
739 
742  void Remove( const T& v )
743  {
744  const_iterator i = pcl::BinarySearch( Begin(), End(), &v, less() );
745  if ( i != End() )
746  m_array.Remove( i, pcl::InsertionPoint( i+1, End(), &v, less() ) );
747  }
748 
751  template <class BP>
752  void Remove( const T& v, BP p )
753  {
754  m_array.Remove( v, p );
755  }
756 
759  void Remove( const T* p )
760  {
761  m_array.Remove( p );
762  }
763 
766  void Clear()
767  {
768  m_array.Clear();
769  }
770 
773  void Delete( iterator i, size_type n = 1 )
774  {
775  Delete( i, i+n );
776  }
777 
780  void Delete( iterator i, iterator j )
781  {
782  // NB: Copy-on-write must *not* happen in this function.
783  if ( i < End() )
784  {
785  i = pcl::Max( const_cast<iterator>( Begin() ), i );
786  j = pcl::Min( j, const_cast<iterator>( End() ) );
787  m_array.Delete( i, j );
788  if ( j < End() )
789  pcl::Fill( pcl::Copy( i, j, const_cast<iterator>( End() ) ),
790  const_cast<iterator>( End() ),
791  static_cast<T*>( nullptr ) );
792  }
793  }
794 
797  void Delete( const T& v )
798  {
799  // NB: Copy-on-write must *not* happen in this function.
800  const_iterator i = pcl::BinarySearch( Begin(), End(), &v, less() );
801  if ( i != End() )
802  Delete( const_cast<iterator>( i ),
803  const_cast<iterator>( pcl::InsertionPoint( i+1, Begin(), &v, less() ) ) );
804  }
805 
808  template <class BP>
809  void Delete( const T& v, BP p )
810  {
811  // NB: Copy-on-write must *not* happen in this function.
812  m_array.Delete( v, p );
813  pcl::QuickSort( Begin(), End(), less() );
814  }
815 
818  void Delete()
819  {
820  m_array.Delete();
821  }
822 
825  void Destroy( iterator i, size_type n = 1 )
826  {
827  m_array.Destroy( i, n );
828  }
829 
832  void Destroy( iterator i, iterator j )
833  {
834  m_array.Destroy( i, j );
835  }
836 
839  void Destroy( const T& v )
840  {
841  const_iterator i = pcl::BinarySearch( Begin(), End(), &v, less() );
842  if ( i != End() )
843  Destroy( const_cast<iterator>( i ),
844  const_cast<iterator>( pcl::InsertionPoint( i+1, End(), &v, less() ) ) );
845  }
846 
849  template <class BP>
850  void Destroy( const T& v, BP p )
851  {
852  m_array.Destroy( v, p );
853  pcl::QuickSort( Begin(), End(), less() );
854  }
855 
858  void Destroy()
859  {
860  m_array.Destroy();
861  }
862 
865  void Pack()
866  {
867  m_array.Pack();
868  }
869 
872  void Reserve( size_type n )
873  {
874  m_array.Reserve( n );
875  }
876 
879  void Squeeze()
880  {
881  m_array.Squeeze();
882  }
883 
887  void Fill( const T& v )
888  {
889  m_array.Fill( v );
890  }
891 
894  template <class F>
895  void Apply( F f ) const
896  {
897  m_array.Apply( f );
898  }
899 
902  template <class F>
904  {
905  return m_array.FirstThat( f );
906  }
907 
910  template <class F>
912  {
913  return m_array.LastThat( f );
914  }
915 
918  size_type Count( const T& v ) const
919  {
920  const_iterator i = pcl::BinarySearch( Begin(), End(), &v, less() );
921  return (i != End()) ? pcl::InsertionPoint( i+1, End(), &v, less() ) - i : 0;
922  }
923 
926  size_type Count( const T* p ) const
927  {
928  return m_array.Count( p );
929  }
930 
933  template <class BP>
934  size_type Count( const T& v, BP p ) const
935  {
936  return m_array.Count( v, p );
937  }
938 
941  template <class UP>
942  size_type CountIf( UP p ) const
943  {
944  return m_array.CountIf( p );
945  }
946 
950  {
951  return Begin();
952  }
953 
956  template <class BP>
957  const_iterator MinItem( BP p ) const
958  {
959  return m_array.MinItem( p );
960  }
961 
965  {
966  return IsEmpty() ? End() : End()-1;
967  }
968 
971  template <class BP>
972  const_iterator MaxItem( BP p ) const
973  {
974  return m_array.MaxItem( p );
975  }
976 
979  const_iterator Search( const T& v ) const
980  {
981  return pcl::BinarySearch( Begin(), End(), &v, less() );
982  }
983 
986  const_iterator Search( const T* p ) const
987  {
988  return m_array.Search( p );
989  }
990 
993  template <class BP>
994  const_iterator Search( const T& v, BP p ) const
995  {
996  return m_array.Search( v, p );
997  }
998 
1001  const_iterator SearchLast( const T& v ) const
1002  {
1003  return pcl::BinarySearchLast( Begin(), End(), &v, less() );
1004  }
1005 
1008  const_iterator SearchLast( const T* p ) const
1009  {
1010  return m_array.SearchLast( p );
1011  }
1012 
1015  template <class BP>
1016  const_iterator SearchLast( const T& v, BP p ) const
1017  {
1018  return m_array.SearchLast( v, p );
1019  }
1020 
1023  bool Contains( const T& v ) const
1024  {
1025  return Search( v ) != End();
1026  }
1027 
1030  bool Contains( const T* p ) const
1031  {
1032  return m_array.Contains( p );
1033  }
1034 
1037  template <class BP>
1038  bool Contains( const T& v, BP p ) const
1039  {
1040  return Search( v, p ) != End();
1041  }
1042 
1045  void Sort()
1046  {
1047  m_array.Sort();
1048  }
1049 
1054  {
1055  pcl::Swap( x1.m_array, x2.m_array );
1056  }
1057 
1063  friend bool operator ==( const IndirectSortedArray& x1, const IndirectSortedArray& x2 )
1064  {
1065  return x1.m_array == x2.m_array;
1066  }
1067 
1073  friend bool operator ==( const IndirectSortedArray& x1, const array_implementation& x2 )
1074  {
1075  return x1.m_array == x2;
1076  }
1077 
1083  friend bool operator ==( const array_implementation& x1, const IndirectSortedArray& x2 )
1084  {
1085  return x1 == x2.m_array;
1086  }
1087 
1093  friend bool operator <( const IndirectSortedArray& x1, const IndirectSortedArray& x2 )
1094  {
1095  return x1.m_array < x2.m_array;
1096  }
1097 
1103  friend bool operator <( const IndirectSortedArray& x1, const array_implementation& x2 )
1104  {
1105  return x1.m_array < x2;
1106  }
1107 
1113  friend bool operator <( const array_implementation& x1, const IndirectSortedArray& x2 )
1114  {
1115  return x1 < x2.m_array;
1116  }
1117 
1134  template <class S, typename SP>
1135  S& ToSeparated( S& s, SP separator ) const
1136  {
1137  return m_array.ToSeparated( s, separator );
1138  }
1139 
1162  template <class S, typename SP, class AF>
1163  S& ToSeparated( S& s, SP separator, AF append ) const
1164  {
1165  return m_array.ToSeparated( s, separator, append );
1166  }
1167 
1176  template <class S>
1177  S& ToCommaSeparated( S& s ) const
1178  {
1179  return m_array.ToCommaSeparated( s );
1180  }
1181 
1190  template <class S>
1191  S& ToSpaceSeparated( S& s ) const
1192  {
1193  return m_array.ToSpaceSeparated( s );
1194  }
1195 
1204  template <class S>
1205  S& ToTabSeparated( S& s ) const
1206  {
1207  return m_array.ToTabSeparated( s );
1208  }
1209 
1220  uint64 Hash64( uint64 seed = 0 ) const
1221  {
1222  return m_array.Hash64( seed );
1223  }
1224 
1235  uint32 Hash32( uint32 seed = 0 ) const
1236  {
1237  return m_array.Hash32( seed );
1238  }
1239 
1244  uint64 Hash( uint64 seed = 0 ) const
1245  {
1246  return Hash64( seed );
1247  }
1248 
1249  // -------------------------------------------------------------------------
1250 
1251 private:
1252 
1253  array_implementation m_array;
1254 };
1255 
1256 // ----------------------------------------------------------------------------
1257 
1265 template <class T, class A, class V> inline
1266 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>& x, const V* p )
1267 {
1268  x.Add( static_cast<const T*>( p ) );
1269  return x;
1270 }
1271 
1279 template <class T, class A, class V> inline
1280 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>&& x, const V* p )
1281 {
1282  x.Add( static_cast<const T*>( p ) );
1283  return x;
1284 }
1285 
1291 template <class T, class A> inline
1292 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>& x1, const IndirectSortedArray<T,A>& x2 )
1293 {
1294  x1.Add( x2 );
1295  return x1;
1296 }
1297 
1303 template <class T, class A> inline
1304 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>&& x1, const IndirectSortedArray<T,A>& x2 )
1305 {
1306  x1.Add( x2 );
1307  return x1;
1308 }
1309 
1315 template <class T, class A> inline
1316 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>& x1, const IndirectArray<T,A>& x2 )
1317 {
1318  x1.Add( x2 );
1319  return x1;
1320 }
1321 
1327 template <class T, class A> inline
1328 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>&& x1, const IndirectArray<T,A>& x2 )
1329 {
1330  x1.Add( x2 );
1331  return x1;
1332 }
1333 
1334 // ----------------------------------------------------------------------------
1335 
1336 } // pcl
1337 
1338 #endif // __PCL_IndirectSortedArray_h
1339 
1340 // ----------------------------------------------------------------------------
1341 // EOF pcl/IndirectSortedArray.h - Released 2024-12-28T16:53:48Z
Provides memory allocation for PCL containers.
Definition: Allocator.h:132
Generic dynamic array of pointers to objects.
Definition: IndirectArray.h:92
T *const * const_iterator
const T * const_item_type
Definition: Container.h:109
Generic dynamic sorted array of pointers to objects.
bool Contains(const T *p) const
const_iterator Search(const T &v, BP p) const
void Import(iterator i, iterator j)
reverse_iterator MutableReverseEnd()
IndirectSortedArray(const IndirectSortedArray &)=default
iterator MutableAt(size_type i)
const_iterator Add(const T *p, size_type n=1)
iterator MutableIterator(const_iterator i)
reverse_iterator MutableReverseBegin()
typename array_implementation::const_reverse_iterator const_reverse_iterator
typename array_implementation::reverse_iterator reverse_iterator
const_iterator MinItem(BP p) const
size_type Count(const T &v, BP p) const
void UniquifyIterators(iterator &i, iterator &j)
void Add(const IndirectSortedArray &x)
const_iterator At(size_type i) const
void Delete(iterator i, iterator j)
const_iterator Begin() const
IndirectSortedArray(size_type n, const T *p)
uint32 Hash32(uint32 seed=0) const
void Remove(const_iterator i, size_type n=1)
const_iterator Search(const T *p) const
const_reverse_iterator ReverseEnd() const
const_iterator SearchLast(const T *p) const
void RemoveFirst(size_type n=1)
IndirectSortedArray(IndirectSortedArray &&)=default
bool Contains(const T &v, BP p) const
const_iterator SearchLast(const T &v, BP p) const
void Destroy(iterator i, iterator j)
void Add(const IndirectArray< T, A > &x)
typename array_implementation::equal equal
void Delete(iterator i, size_type n=1)
const_iterator MaxItem() const
void RemoveLast(size_type n=1)
void Delete(const T &v, BP p)
typename array_implementation::less less
size_type Count(const T &v) const
const_iterator begin() const
void Remove(const T &v, BP p)
size_type Count(const T *p) const
typename array_implementation::block_allocator block_allocator
friend void Swap(IndirectSortedArray &x1, IndirectSortedArray &x2)
typename array_implementation::iterator iterator
void Destroy(const T &v, BP p)
const_iterator LastThat(F f) const
const_reverse_iterator ReverseBegin() const
const allocator & Allocator() const
const_iterator MinItem() const
void Assign(const array_implementation &x)
void Truncate(const_iterator i)
void Transfer(IndirectSortedArray &x)
void Transfer(IndirectSortedArray &&x)
typename array_implementation::const_iterator const_iterator
const_iterator end() const
void CloneAssign(SortedArray< T, A > &x)
uint64 Hash(uint64 seed=0) const
const_iterator MaxItem(BP p) const
void Destroy(iterator i, size_type n=1)
const_iterator End() const
bool IsAliasOf(const IndirectSortedArray &x) const
void Remove(const_iterator i, const_iterator j)
void Transfer(array_implementation &x)
void UniquifyIterator(iterator &i)
uint64 Hash64(uint64 seed=0) const
void CloneAssign(IndirectSortedArray &x)
size_type CountIf(UP p) const
const_iterator FirstThat(F f) const
bool Contains(const T &v) const
const_iterator Search(const T &v) const
typename array_implementation::allocator allocator
void Assign(const T *p, size_type n=1)
void Shrink(size_type n=1)
const_iterator SearchLast(const T &v) const
void SetAllocator(const allocator &a)
void Assign(const IndirectSortedArray &x)
void Transfer(array_implementation &&x)
Root base class of all PCL sorted containers of pointers to objects.
Definition: Container.h:138
typename IndirectContainer< T >::item_type item_type
Definition: Container.h:144
typename IndirectContainer< T >::const_item_type const_item_type
Definition: Container.h:149
Reverse random access iterator.
Definition: Iterator.h:420
Generic dynamic sorted array.
Definition: SortedArray.h:83
Array< T, A > & operator<<(Array< T, A > &x, const V &v)
Definition: Array.h:2313
bool operator==(const Array< T, A > &x1, const Array< T, A > &x2) noexcept
Definition: Array.h:2285
bool operator<(const Array< T, A > &x1, const Array< T, A > &x2) noexcept
Definition: Array.h:2296
Complex< T1 > operator*(const Complex< T1 > &c1, const Complex< T2 > &c2) noexcept
Definition: Complex.h:562
uint64 Hash64(const void *data, size_type size, uint64 seed=0) noexcept
Definition: Math.h:4830
void Destroy(T *p)
Definition: Allocator.h:277
void Swap(GenericPoint< T > &p1, GenericPoint< T > &p2) noexcept
Definition: Point.h:1459
unsigned long long uint64
Definition: Defs.h:682
unsigned int uint32
Definition: Defs.h:666
FI BinarySearch(FI i, FI j, const T &v) noexcept
Definition: Search.h:170
FI BinarySearchLast(FI i, FI j, const T &v) noexcept
Definition: Search.h:238
FI1 Search(FI1 i1, FI1 j1, FI2 i2, FI2 j2) noexcept
Definition: Search.h:397
FI InsertionPoint(FI i, FI j, const T &v) noexcept
Definition: Search.h:326
size_t size_type
Definition: Defs.h:609
void Sort(BI i, BI j)
Definition: Sort.h:520
void QuickSort(RI i, RI j)
Definition: Sort.h:236
constexpr const T & Min(const T &a, const T &b) noexcept
Definition: Utility.h:90
constexpr const T & Max(const T &a, const T &b) noexcept
Definition: Utility.h:119
PCL root namespace.
Definition: AbstractImage.h:77
A functional class that tests two pointers for equality of the pointed objects.
Definition: Indirect.h:278
A functional class that applies the less than relational operator to the objects pointed to by two po...
Definition: Indirect.h:300