PCL
IndirectSortedArray.h
Go to the documentation of this file.
1 // ____ ______ __
2 // / __ \ / ____// /
3 // / /_/ // / / /
4 // / ____// /___ / /___ PixInsight Class Library
5 // /_/ \____//_____/ PCL 2.7.0
6 // ----------------------------------------------------------------------------
7 // pcl/IndirectSortedArray.h - Released 2024-06-18T15:48:54Z
8 // ----------------------------------------------------------------------------
9 // This file is part of the PixInsight Class Library (PCL).
10 // PCL is a multiplatform C++ framework for development of PixInsight modules.
11 //
12 // Copyright (c) 2003-2024 Pleiades Astrophoto S.L. All Rights Reserved.
13 //
14 // Redistribution and use in both source and binary forms, with or without
15 // modification, is permitted provided that the following conditions are met:
16 //
17 // 1. All redistributions of source code must retain the above copyright
18 // notice, this list of conditions and the following disclaimer.
19 //
20 // 2. All redistributions in binary form must reproduce the above copyright
21 // notice, this list of conditions and the following disclaimer in the
22 // documentation and/or other materials provided with the distribution.
23 //
24 // 3. Neither the names "PixInsight" and "Pleiades Astrophoto", nor the names
25 // of their contributors, may be used to endorse or promote products derived
26 // from this software without specific prior written permission. For written
27 // permission, please contact info@pixinsight.com.
28 //
29 // 4. All products derived from this software, in any form whatsoever, must
30 // reproduce the following acknowledgment in the end-user documentation
31 // and/or other materials provided with the product:
32 //
33 // "This product is based on software from the PixInsight project, developed
34 // by Pleiades Astrophoto and its contributors (https://pixinsight.com/)."
35 //
36 // Alternatively, if that is where third-party acknowledgments normally
37 // appear, this acknowledgment must be reproduced in the product itself.
38 //
39 // THIS SOFTWARE IS PROVIDED BY PLEIADES ASTROPHOTO AND ITS CONTRIBUTORS
40 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
41 // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL PLEIADES ASTROPHOTO OR ITS
43 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
44 // EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, BUSINESS
45 // INTERRUPTION; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; AND LOSS OF USE,
46 // DATA OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49 // POSSIBILITY OF SUCH DAMAGE.
50 // ----------------------------------------------------------------------------
51 
52 #ifndef __PCL_IndirectSortedArray_h
53 #define __PCL_IndirectSortedArray_h
54 
56 
57 #include <pcl/Defs.h>
58 #include <pcl/Diagnostics.h>
59 
60 #include <pcl/IndirectArray.h>
61 #include <pcl/SortedArray.h>
62 
63 namespace pcl
64 {
65 
66 // ----------------------------------------------------------------------------
67 
90 template <class T, class A = StandardAllocator>
91 class PCL_CLASS IndirectSortedArray : public IndirectSortedContainer<T>
92 {
93 public:
94 
98 
102 
106 
110 
114 
118 
122 
126 
130 
131  // -------------------------------------------------------------------------
132 
136  IndirectSortedArray() = default;
137 
142  explicit
144  : m_array( n )
145  {
146  }
147 
153  : m_array( n, p )
154  {
155  }
156 
162  template <class FI>
163  IndirectSortedArray( FI i, FI j )
164  : m_array( i, j )
165  {
166  Sort();
167  }
168 
173 
178 
187  {
188  }
189 
194  bool IsUnique() const
195  {
196  return m_array.IsUnique();
197  }
198 
206  bool IsAliasOf( const IndirectSortedArray& x ) const
207  {
208  return m_array.IsAliasOf( x.m_array );
209  }
210 
220  {
221  m_array.EnsureUnique();
222  }
223 
228  size_type Size() const
229  {
230  return m_array.Size();
231  }
232 
236  {
237  return m_array.Length();
238  }
239 
243  {
244  return m_array.Capacity();
245  }
246 
250  {
251  return m_array.Available();
252  }
253 
256  bool IsValid() const
257  {
258  return m_array.IsValid();
259  }
260 
263  bool IsEmpty() const
264  {
265  return m_array.IsEmpty();
266  }
267 
271  {
272  return m_array.LowerBound();
273  }
274 
278  {
279  return m_array.UpperBound();
280  }
281 
284  const allocator& Allocator() const
285  {
286  return m_array.Allocator();
287  }
288 
291  void SetAllocator( const allocator& a )
292  {
293  m_array.SetAllocator( a );
294  }
295 
299  {
300  return m_array.At( i );
301  }
302 
306  {
307  return m_array.At( i );
308  }
309 
313  {
314  return m_array.MutableIterator( i );
315  }
316 
319  const T* operator []( size_type i ) const
320  {
321  return m_array[i];
322  }
323 
326  const T* operator *() const
327  {
328  return *Begin();
329  }
330 
334  {
335  return m_array.ConstBegin();
336  }
337 
341  {
342  return m_array.Begin();
343  }
344 
348  {
349  return m_array.ConstEnd();
350  }
351 
355  {
356  return m_array.End();
357  }
358 
362  {
363  return m_array.ConstReverseBegin();
364  }
365 
369  {
370  return m_array.ReverseBegin();
371  }
372 
376  {
377  return m_array.ConstReverseEnd();
378  }
379 
383  {
384  return m_array.ReverseEnd();
385  }
386 
389  const T* First() const
390  {
391  return m_array.First();
392  }
393 
396  T* MutableFirst()
397  {
398  return IsEmpty() ? nullptr : *MutableBegin();
399  }
400 
403  const T* Last() const
404  {
405  return m_array.Last();
406  }
407 
410  T* MutableLast()
411  {
412  return IsEmpty() ? nullptr : *MutableReverseBegin();
413  }
414 
424  {
425  m_array.UniquifyIterator( i );
426  }
427 
438  {
439  m_array.UniquifyIterators( i, j );
440  }
441 
442 #ifndef __PCL_NO_STL_COMPATIBLE_ITERATORS
447  {
448  return Begin();
449  }
450 
455  {
456  return End();
457  }
458 #endif // !__PCL_NO_STL_COMPATIBLE_ITERATORS
459 
466  IndirectSortedArray& operator =( const IndirectSortedArray& x )
467  {
468  Assign( x );
469  return *this;
470  }
471 
474  void Assign( const IndirectSortedArray& x )
475  {
476  m_array.Assign( x.m_array );
477  }
478 
483  {
484  Transfer( x );
485  return *this;
486  }
487 
491  {
492  m_array.Transfer( x.m_array );
493  }
494 
498  {
499  m_array.Transfer( x.m_array );
500  }
501 
505  {
506  Assign( x );
507  return *this;
508  }
509 
512  void Assign( const array_implementation& x )
513  {
514  m_array.Assign( x );
515  Sort();
516  }
517 
521  {
522  Transfer( x );
523  return *this;
524  }
525 
529  {
530  m_array.Transfer( x );
531  Sort();
532  }
533 
537  {
538  m_array.Transfer( x );
539  Sort();
540  }
541 
544  void Assign( const T* p, size_type n = 1 )
545  {
546  m_array.Assign( p, n );
547  }
548 
551  template <class FI>
552  void Assign( FI i, FI j )
553  {
554  m_array.Assign( i, j );
555  Sort();
556  }
557 
560  template <class C>
561  void CloneAssign( const C& x )
562  {
563  m_array.CloneAssign( x );
564  Sort();
565  }
566 
570  {
571  m_array.CloneAssign( x );
572  }
573 
577  {
578  m_array.CloneAssign( x );
579  }
580 
583  void Import( iterator i, iterator j )
584  {
585  m_array.Import( i, j );
586  Sort();
587  }
588 
592  {
593  return m_array.Release();
594  }
595 
598  void Add( const IndirectSortedArray& x )
599  {
600  const_iterator p = x.m_array.Begin(), q = x.m_array.End();
601  less cmp;
602  for ( iterator i = m_array.Begin(); i < m_array.End() && p < q; ++i )
603  if ( cmp( *p, *i ) )
604  i = m_array.Insert( i, *p++ );
605  if ( p < q )
606  m_array.Append( p, q );
607  }
608 
611  void Add( const IndirectArray<T,A>& x )
612  {
613  Add( x.Begin(), x.End() );
614  }
615 
618  const_iterator Add( const T* p, size_type n = 1 )
619  {
620  return m_array.Insert( pcl::InsertionPoint( m_array.Begin(), m_array.End(), p, less() ), p, n );
621  }
622 
625  template <class FI>
626  void Add( FI i, FI j )
627  {
628  if ( i != j )
629  {
630  m_array.EnsureUnique();
631  for ( const_iterator l = m_array.Begin(), r = m_array.End(); ; )
632  {
633  FI h = i;
634  const_iterator m = m_array.Insert( pcl::InsertionPoint( l, r, *i, less() ), *i );
635 
636  if ( ++i == j )
637  break;
638 
639  if ( less()( *i, *h ) )
640  {
641  l = m_array.Begin();
642  r = m;
643  }
644  else
645  {
646  l = m+1;
647  r = m_array.End();
648  }
649  }
650  }
651  }
652 
655  void Remove( const_iterator i, size_type n = 1 )
656  {
657  m_array.Remove( i, n );
658  }
659 
663  {
664  m_array.Remove( i, j );
665  }
666 
679  void RemoveFirst( size_type n = 1 )
680  {
681  m_array.RemoveFirst( n );
682  }
683 
696  void RemoveLast( size_type n = 1 )
697  {
698  m_array.RemoveLast( n );
699  }
700 
715  {
716  m_array.Truncate( i );
717  }
718 
723  void Shrink( size_type n = 1 )
724  {
725  m_array.Shrink( n );
726  }
727 
730  void Remove( const T& v )
731  {
732  const_iterator i = pcl::BinarySearch( Begin(), End(), &v, less() );
733  if ( i != End() )
734  m_array.Remove( i, pcl::InsertionPoint( i+1, End(), &v, less() ) );
735  }
736 
739  template <class BP>
740  void Remove( const T& v, BP p )
741  {
742  m_array.Remove( v, p );
743  }
744 
747  void Remove( const T* p )
748  {
749  m_array.Remove( p );
750  }
751 
754  void Clear()
755  {
756  m_array.Clear();
757  }
758 
761  void Delete( iterator i, size_type n = 1 )
762  {
763  Delete( i, i+n );
764  }
765 
768  void Delete( iterator i, iterator j )
769  {
770  // NB: Copy-on-write must *not* happen in this function.
771  if ( i < End() )
772  {
773  i = pcl::Max( const_cast<iterator>( Begin() ), i );
774  j = pcl::Min( j, const_cast<iterator>( End() ) );
775  m_array.Delete( i, j );
776  if ( j < End() )
777  pcl::Fill( pcl::Copy( i, j, const_cast<iterator>( End() ) ),
778  const_cast<iterator>( End() ),
779  static_cast<T*>( nullptr ) );
780  }
781  }
782 
785  void Delete( const T& v )
786  {
787  // NB: Copy-on-write must *not* happen in this function.
788  const_iterator i = pcl::BinarySearch( Begin(), End(), &v, less() );
789  if ( i != End() )
790  Delete( const_cast<iterator>( i ),
791  const_cast<iterator>( pcl::InsertionPoint( i+1, Begin(), &v, less() ) ) );
792  }
793 
796  template <class BP>
797  void Delete( const T& v, BP p )
798  {
799  // NB: Copy-on-write must *not* happen in this function.
800  m_array.Delete( v, p );
801  pcl::QuickSort( Begin(), End(), less() );
802  }
803 
806  void Delete()
807  {
808  m_array.Delete();
809  }
810 
813  void Destroy( iterator i, size_type n = 1 )
814  {
815  m_array.Destroy( i, n );
816  }
817 
820  void Destroy( iterator i, iterator j )
821  {
822  m_array.Destroy( i, j );
823  }
824 
827  void Destroy( const T& v )
828  {
829  const_iterator i = pcl::BinarySearch( Begin(), End(), &v, less() );
830  if ( i != End() )
831  Destroy( const_cast<iterator>( i ),
832  const_cast<iterator>( pcl::InsertionPoint( i+1, End(), &v, less() ) ) );
833  }
834 
837  template <class BP>
838  void Destroy( const T& v, BP p )
839  {
840  m_array.Destroy( v, p );
841  pcl::QuickSort( Begin(), End(), less() );
842  }
843 
846  void Destroy()
847  {
848  m_array.Destroy();
849  }
850 
853  void Pack()
854  {
855  m_array.Pack();
856  }
857 
860  void Reserve( size_type n )
861  {
862  m_array.Reserve( n );
863  }
864 
867  void Squeeze()
868  {
869  m_array.Squeeze();
870  }
871 
875  void Fill( const T& v )
876  {
877  m_array.Fill( v );
878  }
879 
882  template <class F>
883  void Apply( F f ) const
884  {
885  m_array.Apply( f );
886  }
887 
890  template <class F>
892  {
893  return m_array.FirstThat( f );
894  }
895 
898  template <class F>
900  {
901  return m_array.LastThat( f );
902  }
903 
906  size_type Count( const T& v ) const
907  {
908  const_iterator i = pcl::BinarySearch( Begin(), End(), &v, less() );
909  return (i != End()) ? pcl::InsertionPoint( i+1, End(), &v, less() ) - i : 0;
910  }
911 
914  size_type Count( const T* p ) const
915  {
916  return m_array.Count( p );
917  }
918 
921  template <class BP>
922  size_type Count( const T& v, BP p ) const
923  {
924  return m_array.Count( v, p );
925  }
926 
929  template <class UP>
930  size_type CountIf( UP p ) const
931  {
932  return m_array.CountIf( p );
933  }
934 
938  {
939  return Begin();
940  }
941 
944  template <class BP>
945  const_iterator MinItem( BP p ) const
946  {
947  return m_array.MinItem( p );
948  }
949 
953  {
954  return IsEmpty() ? End() : End()-1;
955  }
956 
959  template <class BP>
960  const_iterator MaxItem( BP p ) const
961  {
962  return m_array.MaxItem( p );
963  }
964 
967  const_iterator Search( const T& v ) const
968  {
969  return pcl::BinarySearch( Begin(), End(), &v, less() );
970  }
971 
974  const_iterator Search( const T* p ) const
975  {
976  return m_array.Search( p );
977  }
978 
981  template <class BP>
982  const_iterator Search( const T& v, BP p ) const
983  {
984  return m_array.Search( v, p );
985  }
986 
989  const_iterator SearchLast( const T& v ) const
990  {
991  return pcl::BinarySearchLast( Begin(), End(), &v, less() );
992  }
993 
996  const_iterator SearchLast( const T* p ) const
997  {
998  return m_array.SearchLast( p );
999  }
1000 
1003  template <class BP>
1004  const_iterator SearchLast( const T& v, BP p ) const
1005  {
1006  return m_array.SearchLast( v, p );
1007  }
1008 
1011  bool Contains( const T& v ) const
1012  {
1013  return Search( v ) != End();
1014  }
1015 
1018  bool Contains( const T* p ) const
1019  {
1020  return m_array.Contains( p );
1021  }
1022 
1025  template <class BP>
1026  bool Contains( const T& v, BP p ) const
1027  {
1028  return Search( v, p ) != End();
1029  }
1030 
1033  void Sort()
1034  {
1035  m_array.Sort();
1036  }
1037 
1042  {
1043  pcl::Swap( x1.m_array, x2.m_array );
1044  }
1045 
1051  friend bool operator ==( const IndirectSortedArray& x1, const IndirectSortedArray& x2 )
1052  {
1053  return x1.m_array == x2.m_array;
1054  }
1055 
1061  friend bool operator ==( const IndirectSortedArray& x1, const array_implementation& x2 )
1062  {
1063  return x1.m_array == x2;
1064  }
1065 
1071  friend bool operator ==( const array_implementation& x1, const IndirectSortedArray& x2 )
1072  {
1073  return x1 == x2.m_array;
1074  }
1075 
1081  friend bool operator <( const IndirectSortedArray& x1, const IndirectSortedArray& x2 )
1082  {
1083  return x1.m_array < x2.m_array;
1084  }
1085 
1091  friend bool operator <( const IndirectSortedArray& x1, const array_implementation& x2 )
1092  {
1093  return x1.m_array < x2;
1094  }
1095 
1101  friend bool operator <( const array_implementation& x1, const IndirectSortedArray& x2 )
1102  {
1103  return x1 < x2.m_array;
1104  }
1105 
1122  template <class S, typename SP>
1123  S& ToSeparated( S& s, SP separator ) const
1124  {
1125  return m_array.ToSeparated( s, separator );
1126  }
1127 
1150  template <class S, typename SP, class AF>
1151  S& ToSeparated( S& s, SP separator, AF append ) const
1152  {
1153  return m_array.ToSeparated( s, separator, append );
1154  }
1155 
1164  template <class S>
1165  S& ToCommaSeparated( S& s ) const
1166  {
1167  return m_array.ToCommaSeparated( s );
1168  }
1169 
1178  template <class S>
1179  S& ToSpaceSeparated( S& s ) const
1180  {
1181  return m_array.ToSpaceSeparated( s );
1182  }
1183 
1192  template <class S>
1193  S& ToTabSeparated( S& s ) const
1194  {
1195  return m_array.ToTabSeparated( s );
1196  }
1197 
1208  uint64 Hash64( uint64 seed = 0 ) const
1209  {
1210  return m_array.Hash64( seed );
1211  }
1212 
1223  uint32 Hash32( uint32 seed = 0 ) const
1224  {
1225  return m_array.Hash32( seed );
1226  }
1227 
1232  uint64 Hash( uint64 seed = 0 ) const
1233  {
1234  return Hash64( seed );
1235  }
1236 
1237  // -------------------------------------------------------------------------
1238 
1239 private:
1240 
1241  array_implementation m_array;
1242 };
1243 
1244 // ----------------------------------------------------------------------------
1245 
1253 template <class T, class A, class V> inline
1254 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>& x, const V* p )
1255 {
1256  x.Add( static_cast<const T*>( p ) );
1257  return x;
1258 }
1259 
1267 template <class T, class A, class V> inline
1268 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>&& x, const V* p )
1269 {
1270  x.Add( static_cast<const T*>( p ) );
1271  return x;
1272 }
1273 
1279 template <class T, class A> inline
1280 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>& x1, const IndirectSortedArray<T,A>& x2 )
1281 {
1282  x1.Add( x2 );
1283  return x1;
1284 }
1285 
1291 template <class T, class A> inline
1292 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>&& x1, const IndirectSortedArray<T,A>& x2 )
1293 {
1294  x1.Add( x2 );
1295  return x1;
1296 }
1297 
1303 template <class T, class A> inline
1304 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>& x1, const IndirectArray<T,A>& x2 )
1305 {
1306  x1.Add( x2 );
1307  return x1;
1308 }
1309 
1315 template <class T, class A> inline
1316 IndirectSortedArray<T,A>& operator <<( IndirectSortedArray<T,A>&& x1, const IndirectArray<T,A>& x2 )
1317 {
1318  x1.Add( x2 );
1319  return x1;
1320 }
1321 
1322 // ----------------------------------------------------------------------------
1323 
1324 } // pcl
1325 
1326 #endif // __PCL_IndirectSortedArray_h
1327 
1328 // ----------------------------------------------------------------------------
1329 // EOF pcl/IndirectSortedArray.h - Released 2024-06-18T15:48:54Z
Provides memory allocation for PCL containers.
Definition: Allocator.h:132
Generic dynamic array of pointers to objects.
Definition: IndirectArray.h:92
T *const * const_iterator
Generic dynamic sorted array of pointers to objects.
bool Contains(const T *p) const
const_iterator Search(const T &v, BP p) const
void Import(iterator i, iterator j)
reverse_iterator MutableReverseEnd()
IndirectSortedArray(const IndirectSortedArray &)=default
iterator MutableAt(size_type i)
const_iterator Add(const T *p, size_type n=1)
iterator MutableIterator(const_iterator i)
reverse_iterator MutableReverseBegin()
typename array_implementation::const_reverse_iterator const_reverse_iterator
typename array_implementation::reverse_iterator reverse_iterator
const_iterator MinItem(BP p) const
size_type Count(const T &v, BP p) const
void UniquifyIterators(iterator &i, iterator &j)
void Add(const IndirectSortedArray &x)
const_iterator At(size_type i) const
void Delete(iterator i, iterator j)
const_iterator Begin() const
IndirectSortedArray(size_type n, const T *p)
uint32 Hash32(uint32 seed=0) const
void Remove(const_iterator i, size_type n=1)
const_iterator Search(const T *p) const
const_reverse_iterator ReverseEnd() const
const_iterator SearchLast(const T *p) const
void RemoveFirst(size_type n=1)
IndirectSortedArray(IndirectSortedArray &&)=default
bool Contains(const T &v, BP p) const
const_iterator SearchLast(const T &v, BP p) const
void Destroy(iterator i, iterator j)
void Add(const IndirectArray< T, A > &x)
typename array_implementation::equal equal
void Delete(iterator i, size_type n=1)
const_iterator MaxItem() const
void RemoveLast(size_type n=1)
void Delete(const T &v, BP p)
typename array_implementation::less less
size_type Count(const T &v) const
const_iterator begin() const
void Remove(const T &v, BP p)
size_type Count(const T *p) const
typename array_implementation::block_allocator block_allocator
friend void Swap(IndirectSortedArray &x1, IndirectSortedArray &x2)
typename array_implementation::iterator iterator
void Destroy(const T &v, BP p)
const_iterator LastThat(F f) const
const_reverse_iterator ReverseBegin() const
const allocator & Allocator() const
const_iterator MinItem() const
void Assign(const array_implementation &x)
void Truncate(const_iterator i)
void Transfer(IndirectSortedArray &x)
void Transfer(IndirectSortedArray &&x)
typename array_implementation::const_iterator const_iterator
const_iterator end() const
void CloneAssign(SortedArray< T, A > &x)
uint64 Hash(uint64 seed=0) const
const_iterator MaxItem(BP p) const
void Destroy(iterator i, size_type n=1)
const_iterator End() const
bool IsAliasOf(const IndirectSortedArray &x) const
void Remove(const_iterator i, const_iterator j)
void Transfer(array_implementation &x)
void UniquifyIterator(iterator &i)
uint64 Hash64(uint64 seed=0) const
void CloneAssign(IndirectSortedArray &x)
size_type CountIf(UP p) const
const_iterator FirstThat(F f) const
bool Contains(const T &v) const
const_iterator Search(const T &v) const
typename array_implementation::allocator allocator
void Assign(const T *p, size_type n=1)
void Shrink(size_type n=1)
const_iterator SearchLast(const T &v) const
void SetAllocator(const allocator &a)
void Assign(const IndirectSortedArray &x)
void Transfer(array_implementation &&x)
Root base class of all PCL sorted containers of pointers to objects.
Definition: Container.h:111
Reverse random access iterator.
Definition: Iterator.h:420
Generic dynamic sorted array.
Definition: SortedArray.h:83
Array< T, A > & operator<<(Array< T, A > &x, const V &v)
Definition: Array.h:2295
bool operator==(const Array< T, A > &x1, const Array< T, A > &x2) noexcept
Definition: Array.h:2267
bool operator<(const Array< T, A > &x1, const Array< T, A > &x2) noexcept
Definition: Array.h:2278
Complex< T1 > operator*(const Complex< T1 > &c1, const Complex< T2 > &c2) noexcept
Definition: Complex.h:548
uint64 Hash64(const void *data, size_type size, uint64 seed=0) noexcept
Definition: Math.h:4750
void Destroy(T *p)
Definition: Allocator.h:277
void Swap(GenericPoint< T > &p1, GenericPoint< T > &p2) noexcept
Definition: Point.h:1459
unsigned long long uint64
Definition: Defs.h:682
unsigned int uint32
Definition: Defs.h:666
FI BinarySearch(FI i, FI j, const T &v) noexcept
Definition: Search.h:170
FI BinarySearchLast(FI i, FI j, const T &v) noexcept
Definition: Search.h:238
FI1 Search(FI1 i1, FI1 j1, FI2 i2, FI2 j2) noexcept
Definition: Search.h:397
FI InsertionPoint(FI i, FI j, const T &v) noexcept
Definition: Search.h:326
size_t size_type
Definition: Defs.h:609
void Sort(BI i, BI j)
Definition: Sort.h:520
void QuickSort(RI i, RI j)
Definition: Sort.h:236
constexpr const T & Min(const T &a, const T &b) noexcept
Definition: Utility.h:90
constexpr const T & Max(const T &a, const T &b) noexcept
Definition: Utility.h:119
PCL root namespace.
Definition: AbstractImage.h:77
A functional class that tests two pointers for equality of the pointed objects.
Definition: Indirect.h:278
A functional class that applies the less than relational operator to the objects pointed to by two po...
Definition: Indirect.h:300