PCL
|
Implemented radial basis functions (RBFs) for surface spline interpolation/approximation. More...
The symbols used in the following table are:
phi(r) The radial basis function evaluated at a point (x,y) r Distance to center, r^2 = (x-xc)^2 + (y-yc)^2 (xc,yc) Center point eps Shape parameter
RadialBasisFunction::Unknown | Unknown or unsupported function. |
RadialBasisFunction::VariableOrder | phi(r) = (r^2)^(m-1) * Ln( r^2 ) |
RadialBasisFunction::ThinPlateSpline | phi(r) = r^2 * Ln( r ) |
RadialBasisFunction::Gaussian | phi(r) = Exp( -(eps*r)^2 ) |
RadialBasisFunction::Multiquadric | phi(r) = Sqrt( 1 + (eps*r)^2 ) |
RadialBasisFunction::InverseMultiquadric | phi(r) = 1/Sqrt( 1 + (eps*r)^2 ) |
RadialBasisFunction::InverseQuadratic | phi(r) = 1/( 1 + (eps*r)^2 ) |
RadialBasisFunction::DDMVariableOrder | Variable-order polyharmonic DDM-RBF. |
RadialBasisFunction::DDMThinPlateSpline | Thin plate spline DDM-RBF. |
RadialBasisFunction::DDMMultiquadric | Multiquadric DDM-RBF. |
DDM (Domain Decomposition Method) RBF interpolation/approximation algorithms require O(n^2) time for spline construction, in contrast to standard implementations, which have O(n^3) time complexity. This makes the DDM-RBF algorithms capable of handling large-scale problems with tens of thousands of data points, while standard algorithms are limited to less than about 3000 points with current hardware. DDM-RBF algorithms require a running PixInsight core application. Standard algorithms are directly implemented in PCL, so they are suitable for standalone applications.